Product integration and solution of ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Integration of Ordinary Differential Equations
where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The usual choice for the new variables is to let them be just derivatives of each other (and of the original variable). Occasionally, it is useful to incorporate into their definition some other factors in the equation, or some powers of the independent variable, for the purpose of mitigating singular behavior that ...
متن کاملIntegration of Ordinary Differential Equations
The solution of differential equations is an important problem that arises in a host of areas. Many differential equations are too difficult to solve in closed form. Instead, it becomes necessary to employ numerical techniques. Differential equations have a major application in understanding physical systems that involve aerodynamics, fluid dynamics, thermodynamics, heat diffusion, mechanical o...
متن کاملMatlab : Numerical Solution of Ordinary Differential Equations
Matlab has facilities for the numerical solution of ordinary differential equations (ODEs) of any order. In this document we first consider the solution of a first order ODE. Higher order ODEs can be solved using the same methods, with the higher order equations first having to be reformulated as a system of first order equations. Techniques for solving the first order and second order equation...
متن کاملOn parallel solution of ordinary differential equations
In this paper the performance of a parallel iterated Runge-Kutta method is compared versus those of the serial fouth order Runge-Kutta and Dormand-Prince methods. It was found that, typically, the runtime for the parallel method is comparable to that of the serial versions, thought it uses considerably more computational resources. A new algorithm is proposed where full parallelization is used ...
متن کاملNumerical solution of ordinary differential equations
Ordinary differential equations are ubiquitous in science and engineering: in geometry and mechanics from the first examples onwards (Newton, Leibniz, Euler, Lagrange), in chemical reaction kinetics, molecular dynamics, electronic circuits, population dynamics, and many more application areas. They also arise, after semidiscretization in space, in the numerical treatment of time-dependent parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1984
ISSN: 0022-247X
DOI: 10.1016/0022-247x(84)90189-6